Interrogation rapide n° 1

1 heure

	Cours	Exercice 1	Exercice 2	Exercice 3	BONUS
Total	6	4	5	5	2

I Questions de cours

- 1. Donner la définition de la multiplication dans \mathbb{C} .
- 2. Compléter la propriété ci-dessous.

La multiplication dans $\mathbb C$ vérifie, comme dans $\mathbb R$, les égalités suivantes :

- (a) $\forall z \in \mathbb{C}, \forall z' \in \mathbb{C}, \dots$.
- (b) $\forall z \in \mathbb{C}, \forall z' \in \mathbb{C}, \forall z'' \in \mathbb{C}, \dots$
- (c) $\forall z \in \mathbb{C}, \dots$
- (d) $\forall z \in \mathbb{C}^*, \dots$

z' est appelé \cdots

De plus si z=a+ib est un complexe non nul ($(a,b)\in\mathbb{R}^2$ et $(a;b)\neq(0;0)$) alors

.

3. Démontrer la propriété : « Soit $z \in \mathbb{C}$, on a : $z \in \mathbb{R} \Leftrightarrow \overline{z} = z$ et $z \in i\mathbb{R} \Leftrightarrow \overline{z} = -z$ »

II Exercices

Exercice 1

Donner l'écriture algébrique des nombres suivants :

1.
$$z_1 = (2i+1)^2$$

2.
$$z_2 = \frac{2+5i}{3-4i}$$

Exercice 2

Soit les nombres complexes z = 1 - 2i et z' = 2 + 3i.

Déterminer les formes algébriques de z+z', zz', z^2 et $\frac{1}{z^2}$.

Exercice 3

Soit $P(z) = z^2 - 4z + 13$ un polynôme défini sur \mathbb{C} .

- 1. Cette partie n'utilisera pas le théorème vu dans la partie IV du cours.
 - (a) Le polynôme P a-t-il des racines dans \mathbb{R} ? Justifier.
 - (b) Justifier que l'on peut écrire, pour tout nombre complexe z, $P(z) = (z-2)^2 + 9$.
 - (c) Calculer $(3i)^2$.
 - (d) En déduire une factorisation dans $\mathbb C$ du polynôme P en produit de polynômes du premier degré.
 - (e) En déduire les racines du polynôme P dans \mathbb{C} .
- 2. Retrouver le résultat précédent en utilisant le théorème vu en cours sur les équations polynômiales du second degré.

BONUS

Soit α un nombre complexe non nul et différent de 1. On définit la suite (z_n) de nombres complexes par $z_0 = 0$ et, pour tout entier naturel n, $z_{n+1} = \alpha z_n - i$.

- 1. Calculer z_1 , z_2 et z_3 en fonction de α .
- 2. Démontrer que : $\forall n \in \mathbb{N}, \ z_n = \frac{1 \alpha^n}{\alpha 1} \times i$